Geometry and Topology of Manifolds
نویسنده
چکیده
s 19 ALEKSEEVSKY, Dmitri , Geometry of quaternionic and para-quaternionic CR manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 BELKO, Ivan, The fundamental form on a Lie groupoid of diffeomorphisms 20 BOGDANOVICH, Sergey A., ERMOLITSKI, Alexander A., Hypercomplex structures on tangent bundles . . . . . . . . . . . . . . . . . . . . 22 DESZCZ, Ryszard, On Roter type manifolds . . . . . . . . . . . . . . . . 25 ERMOLITSKI, Alexander A., Deformations of distributions on Riemannian manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 GŁOGOWSKA, Małgorzata, On quasi-Einstein Cartan type hypersurfaces 29 HALLER, Stefan, Harmonic cohomology of symplectic manifolds . . . . . 30 HOMOLYA, Szilvia, Submersions on nilmanifolds and their geodesics . . . 31 HOTLOŚ, Marian, On certain Ricci-pseudosymmetric hypersurfaces in space forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 KOCK, Anders, Second neighbourhood of the diagonal, and a foundation for conformal geometry . . . . . . . . . . . . . . . . . . . . . . . . . . 33 KOLAR, Ivan, Prolongation of projectable tangent valued forms . . . . . . 36 KROT, Ewa, Remarks on Fibonomial Calculus . . . . . . . . . . . . . . . 37 KUREK, Jan, MIKULSKI, Włodzimierz, Symplectic structures of the tangent bundles of symplectic and cosymplectic manifolds . . . . . . . . 38 KWAŚNIEWSKI, Andrzej Krzysztof, BORAK, Ewa, Extended finite operator calculus an example of algebraization of analysis . . . . . . . . 41 ŁUCZYSZYN, Dorota, On the Bochner curvature of para–Käehlerian manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 MISHCHENKO, Alexandr, KUBARSKI, Jan, Transitive Lie algebroids: spectral sequences and signature . . . . . . . . . . . . . . . . . . . . . 43 MORMUL, Piotr, Geometric singularity classes for special k-flags (k 2) of arbitrary length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 MYKYTYUK, I. V., Invariant Hyper-Kähler Structures on the Cotangent Bundles of Hermitian Symmetric Spaces . . . . . . . . . . . . . . . . 50 NAGY, Péter T., The classification of compact smooth Bol loops . . . . . 52 NGUIFFO BOYOM, Michel, Quadratization of Lie algebroids . . . . . . 53 OLSZAK, Zbigniew, On almost complex structures with Norden metrics on tangent bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 PLACHTA Leonid, Essential tori in link complements in standard positions: geometric and combinatorial aspects . . . . . . . . . . . . . . . 55 PONCIN, Norbert, GRABOWSKI, Janusz, Lie algebras of differential operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 PRADINES, Jean, Lie groupoids viewed as generalized atlases . . . . . . . 60 RYBICKI, Tomasz, Some general remarks on foliated structures . . . . . 62 SAVIN, A. Yu., Elliptic operators on singular manifolds and K-homology . 64 SAWICZ, Katarzyna, On some class of hypersurfaces with pseudosymmetric Weyl tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 SINAISKII, E. E., Translation Continuous Functionals on CB(R) and Their Supports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 SKOPENKOV, Arkadiy., The Whitehead torus, the Hudson-Habegger invariant and classification of embeddings S1 × S3 → R7 . . . . . . . . 71 STERNIN, B. Yu., Elliptic operators on manifolds with nonisolated singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 SZENTHE, János, On spherically symmetric space-time . . . . . . . . . . 75 TOSUN, Murat, DEMIR, Zafer, Generalized Space–Like Ruled Surfaces of the Minkowski Space R1 . . . . . . . . . . . . . . . . . . . . . . . . 76 WALISZEWSKI, Włodzimierz, Quasi-polyhedrons . . . . . . . . . . . . . 79
منابع مشابه
A Geometry Preserving Kernel over Riemannian Manifolds
Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...
متن کاملRelative volume comparison theorems in Finsler geometry and their applications
We establish some relative volume comparison theorems for extremal volume forms of Finsler manifolds under suitable curvature bounds. As their applications, we obtain some results on curvature and topology of Finsler manifolds. Our results remove the usual assumption on S-curvature that is needed in the literature.
متن کاملOn some generalized recurrent manifolds
The object of the present paper is to introduce and study a type of non-flat semi-Riemannian manifolds, called, super generalized recurrent manifolds which generalizes both the notion of hyper generalized recurrent manifolds [A.A. Shaikh and A. Patra, On a generalized class of recurrent manifolds, Arch. Math. (Brno) 46 (2010) 71--78.] and weakly generalized recurrent manifolds ...
متن کاملOn the k-nullity foliations in Finsler geometry
Here, a Finsler manifold $(M,F)$ is considered with corresponding curvature tensor, regarded as $2$-forms on the bundle of non-zero tangent vectors. Certain subspaces of the tangent spaces of $M$ determined by the curvature are introduced and called $k$-nullity foliations of the curvature operator. It is shown that if the dimension of foliation is constant, then the distribution is involutive...
متن کاملfür Mathematik in den Naturwissenschaften Leipzig Dually Flat Manifolds and Global Information Geometry
Dually flat manifolds constitute fundamental mathematical objects of information geometry. This note establishes some facts on the global properties and topology of dually flat manifolds which, in particular, provide answers to questions and problems in global information geometry posed by Amari and Amari-Nagaoka.
متن کاملCombinatorial Differential Topology and Geometry
A variety of questions in combinatorics lead one to the task of analyzing the topology of a simplicial complex, or a more general cell complex. However, there are few general techniques to aid in this investigation. On the other hand, the subjects of differential topology and geometry are devoted to precisely this sort of problem, except that the topological spaces in question are smooth manifo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003